INTRODUCTION

Modern day electronic systems such as communication systems, data handling systems, missile and spacecraft tracking, and telemetry systems require time-of-day information for data correlation with time. Parallel and serial formatted time codes are used to efficiently interface the timing system (time-of-day source) to the user system. Parallel time codes are defined in IRIG Standard 205-87. Standardization of time codes is necessary to ensure system compatibility among the various ranges, ground tracking networks, spacecraft and missile projects, data reduc-tion and processing facilities, and international cooperative projects.

This standard defines the characteristics of six serial time codes presently used by U.S. Government agencies and private industry. Four new combinations have been added to the list of standard formats: A002, A132, B002, and B122. Moreover, this standard reflects the state of the art and is not intended to constrain proposals for new serial time codes with greater resolution.

1.0 GENERAL DESCRIPTION OF STANDARD

This standard consists of a family of rate-scaled serial time codes with formats containing up to three-coded expressions or words. The first word of the time-code frame is time-of-year in binary coded decimal (BCD) notation in days, hours, minutes, seconds, and fractions of seconds depending on the code-frame rate. The second word is a set of bits reserved for encoding of various control, identification, and other special purpose functions. The third word is seconds-of-day weighted in straight binary seconds (SBS) notation.

Manufacturers of time code generating equipment today do not include the seconds-of-day code or the control bits in their design of IRIG serial time code generators. Fill bits of all 0s are added to achieve the desired frame length and code repetition rate. If the user desires the SBS code or control bits, it must be specified (see section 3 for standard code formats).

2.0 GENERAL DESCRIPTION OF FORMATS

An overview of the formats is described in the following subparagraphs.

2.1 Pulse Rise Time

The specified pulse (dc level shift bit) rise time shall be obtained between the 10 and 90 percent amplitude points (see appendix C).

2.2 Jitter

The modulated code is defined as ≤ 1 percent at the carrier frequency. The dc level shift code is defined as the pulse-to-pulse variation at the 50 percent amplitude points on the leading edges of successive pulses or bits (see appendix C).

2.3 Bit Rates and Index Count

Each pulse in a time code word/subword is called a bit. The "on-time" reference point for all bits is the leading edge of the bit. The repetition rate at which the bits occur is called the bit rate. Each bit has an associated numerical index count identification. The time interval between the leading edge of two consecutive bits is the index count interval. The index count begins at the frame reference point with index count 0 and increases one count each index count until the time frame is complete.

Format	Bit Rate	Index Count Interval		
А	1 kpps	1 millisecond		
В	100 pps	10 milliseconds		
D	1 ppm	1 minute		
E	10 pps	0.1 second		
G	10 kpps	0.1 millisecond		
Н	1 pps	1 second		

The bit rates and index count intervals of the time code formats are

2.4 <u>Time Frame, Time Frame Reference, and Time Frame Rates</u>

A time code frame begins with a frame reference marker P_0 (position identifier) followed by a reference bit P_r with each having a duration equal to 0.8 of the index count interval of the respective code. The on-time reference point of a time frame is the leading edge of the reference bit P_r . The repetition rate at which the time frames occur is called the time frame rate.

Format	Time Frame Rate	Time Frame Interval
А	10 fps	0.1 second
В	1 fps	1 second
D	1 fph	1 hour
E	6 fpm	10 seconds
G	100 fps	10 ms
Н	1 fpm	1 minute

The time frame rates and time frame intervals of the formats are

2.5 Position Identifiers

Position identifiers have a duration equal to 0.8 of the index count interval of the respective code. The leading edge of the position identifier P_0 occurs one index count interval before the frame reference point P_r and the succeeding position identifiers (P_2 , P_2 ... P_0) occur every succeeding tenth bit. The repetition rate at which the position identifiers occur is always 0.1 of the time format bit rate.

2.6 Time Code Words

The two time code words employed in this standard are

BCD time-of-year SBS time-of-day (seconds-of-day)

All time code formats are pulse-width coded. A binary (1) bit has a duration equal to 0.5 of the index count interval, and a binary (0) bit has a duration equal to 0.2 of the index count interval. The BCD time-of-year code reads 0 hours, minutes, seconds, and fraction of seconds at 2400 each day and reads day 001 at 2400 of day 365 or day 366 (leap year). The SBS time-of-day code reads 0 seconds at 2400 each day excluding leap second days when a second may be added or subtracted. Coordinated Universal Time (UTC) is generated for all interrange applications.

2.7 BCD Time-of-Year Code Word

The BCD time-of-year code word consists of subwords in days, hours, minutes, seconds, and fractions of a second encoded in a binary representation $(1n \ 2n \ 4n \ 8n)$ where n=1, 10, 100, 1 k...N. Time code digit values less than N are considered zero and are encoded as a binary 0.

The position identifiers preceding the decimal digits and the index count locations of the decimal digits (if present) are

BCD Code Decimal Digits	Decimal Digits Follow Position Identifier	Digits Occupy Index Count Positions
Units of Seconds Tens of Seconds	\mathbf{P}_0	1-4 6-8
Units of Minutes Tens of Minutes	P_1	10-13 15-17
Units of Hours Tens of Hours	P_2	20-23 25-26
Units of Days Tens of Days	P_2	30-33 35-38
Hundreds of Days Tenths of Seconds	P4	40-41 45-48
Hundredths of Seconds	\mathbf{P}_5	50-53

Format A and B include an optional straight binary seconds-of-day (SBS) time code word in addition to the BCD time-of-year time code word. The SBS word follows position identifier P₈ beginning with the least significant binary bit (2^o) at index count 80 and progressing to the most significant binary bit (2¹⁶) at index count 97 with a position identifier P₉ occurring between the ninth (2⁸) and tenth (2⁹) binary bits.

2.8 Control Functions

All time code formats reserve a set of bits known as control functions (CF) for the encoding of various control, identification, or other special purpose functions. The control bits may be programmed in any predetermined coding system. A binary 1 bit has a duration equal to 0.5 of the index count interval, and a binary (0) has a duration equal to 0.2 of the index count interval. Control function bits follow position identifier P_5 or P_6 beginning at index count 50 or 60 with one control function bit per index count, excepting each tenth bit which is a position identifier. The number of available control bits in each time code format are

Format	Control Functions
А	27
В	27
D	9
E	45
G	36
Н	9

Control functions are presently intended for intrarange use but not for interrange applications; therefore, no standard coding system exists. The inclusion of control functions into a time code format as well as the coding system employed is an individual user defined option.

2.9 Index Markers

Index markers occur at all index count positions which are not assigned as a reference marker, position identifier, code, or control function bit. Index marker bits have a duration equal to 0.2 of the index count interval of the respective time code format.

2.10 Amplitude Modulated Carrier

A standard sine wave carrier frequency to be amplitude modulated by a time code is synchronized to have positive-going, zero-axis crossings coincident with the leading edges of the modulating code bits. A mark-to-space ratio of 10:3 is standard with a range of 3:1 to 6:1 (see figure 1 and table 1, Typical Modulated Carrier Signals).

3.0 DETAILED DESCRIPTION OF FORMATS

The family of rate scaled serial time code formats is alphabetically designated A, B, D, E, G, and H. Various combinations of subwords and signal forms make up a time code word. All formats do not contain each standard coded expression, and various signal forms are possible. To differentiate between these forms, signal identification numbers are assigned to each permissible combination according to the following procedure:

	Format A 1 k pps Format B 100 pps Format D 1 ppm Format E 10 pps Format G 10 k pps Format H 1 pps
Format Designation:	
	0 Pulse width coded 1 Sine wave, amplitude modulated
Carrier/Resolution:	
	0 No carrier/index count interval 1 100 Hz/10 ms 2 1 kHz/1 ms 3 10 kHz/0.1 ms 4 100 kHz/10 μs 5 1 MHz/1μs
Coded Expressions:	
A 1 3 0	0 BCD, CF, SBS 1 BCD, CF 2 BCD 3 BCD, SBS

Rate Designation:

EXAMPLES:

Signal	A	1	3	0	:	Format A, amplitude modulated, 10 kHz carrier/0.1 ms resolution, containing BCD, CF, and SBS code expressions.
Signal	В	0	0	3	:	Format B, pulse-width coded, dc level shift/10 ms resolution, containing BCD and SBS code expressions.
Signal	Η	1	2	2	:	Format H, amplitude modulated, 1 kHz carrier/1 ms resolution, containing BCD code expression.

When a coded expression is not present in a time code format, index marker bits occur in place of the absent expression's bits.

The following combination of signals are standard formats; no other combinations are standard:

Format A	Format B	Format D	Format E	Format G	Format H
A000	B000	D001	E001	G001	H001
*A002	*B002	D002	E002	G002	H002
A003	B003	D111	E111	G141	H111
A130	B120 †B150	D112	E112	G142	H112
*A132	*B122 †B152	D121	E121		H121
A133	B123 †B153	D122	E122		H122

* These four combinations have been added to the list of standard formats. These formats truncate after the BCD code word, replacing the control bits and straight binary seconds-of-day with index markers to complete the required frame length.

[†] These three combinations are modulated with 1 MHz.

4.0 GENERAL DESCRIPTION OF TIME CODES

A general description of individual time code formats is described in the following subparagraphs.

4.1 <u>Time Code Format A</u>

4.1.1 The 78-bit time code contains 34 bits of binary coded decimal (BCD) time-of-year information in days, hours, minutes, seconds, and tenths of seconds; 17 bits of straight binary seconds-of-day (SBS) and 27 bits for control functions.

Figure 1. Typical modulated carrier signal.

TABLE 1. TYPICAL MODULATED CARRIER SIGNAL											
				MARK I NUMBER	INTERVA COF CYC	\L LES					
FORMAT	SIGNAL NO.	TIME FRAME RATE	CARRIER FREQUENCY F	SIGNAL BIT RATE ER	RATIO F/ER	CODE "0" & INDEX	CODE "1"	POSITION IDENTIFIER & REF.			
А	A130,132 133	10 per sec.	10 kHz	1 kpps	10:1	2	5	8			
В	B120,122 123	1 per sec.	1 kHz	100 pps	10:1	2	5	8			
D	D111, 112 121,122	1 per hr.	100 Hz 1 kHz	1 ppm 1 ppm	6000:1 60000:1	1200 12000	3000 30000	4800 48000			
E	E111,112 121,122	6 per min.	100 Hz 1 kHz	10 pps 10 pps	10:1 100:1	2 20	5 50	8 80			
G	G141,142	100 per sec.	100 kHz	10 kpps	10:1	2	5	8			
Н	H111,112 121,122	1 per min.	100 Hz 1 kHz	1 pps 1 pps	100:1 1000:1	20 200	50 500	80 800			

4.1.2 The BCD code (seconds subword) begins at index count 1 (LSB first) with binary coded bits occurring between position identifiers P_0 and P_5 : 7 for seconds, 7 for minutes, 6 for hours, 10 for days, and 4 for tenths of seconds to complete the BCD word. An index marker occurs between the decimal digits in each subword, except for the tenths of seconds, to provide separation for visual resolution. The BCD time code word recycles yearly.

4.1.3 The SBS word begins at index count 80 and is between position identifiers P_8 and P_0 with a position identifier bit (P_9) between the 9th and 10th binary SBS coded bits. The SBS time code recycles each 24-hour period.

4.1.4 The control bits occur between position identifiers P_5 and P_8 with a position identifier occurring every 10 bits.

4.1.5 The frame rate or repetition rate is 0.1 second with resolutions of 1 ms (dc level shift) and 0.1 ms (modulated 10 kHz carrier).

4.2 <u>Time Code Format B</u>

4.2.1 The 74-bit time code contains 30 bits of BCD time-of-year information in days, hours, minutes, and seconds; 17 bits of SB seconds-of-day; and 27 bits for control functions.

4.2.2 The BCD code (seconds subword) begins at index count 1 (LSB first) with binary coded bits occurring between position identifier bits P_0 and P_5 : 7 for seconds, 7 for minutes, 6 for hours, and 10 for days, to complete the BCD word. An index marker occurs between the decimal digits in each subword to provide separation for visual resolution. The BCD time code recycles yearly.

4.2.3 The SBS word begins at index count 80 and is between position identifiers P_8 and P_0 with a position identifier bit (P_9) between the 9th and 10th binary SBS coded bits. The SBS time code recycles each 24 hour period.

4.2.4 The control bits occur between position identifiers P_5 and P_8 , with a position identifier every 10 bits.

4.2.5 The frame rate is 1.0 second with resolutions of 10 ms (dc level shift) and 1 ms (modulated 1 kHz carrier).

4.3 <u>Time Code Format D</u>

4.3.1 The 25-bit time code contains 16 bits of BCD time-of-year information in days, hours, and minutes, and 9 bits for control functions.

4.3.2 The BCD code (hours subword) begins at index count 20

(LSB first) with binary coded bits occurring between position identifier bits P_2 and P_5 : 6 for hours and 10 for days to complete the BCD word. An index marker occurs between the decimal digits in each subword for visual resolution. The time code recycles yearly.

4.3.3 The control bits occur between position identifiers P_5 and P_0 .

4.3.4 The frame rate is one hour with resolutions of 1 minute (dc level shift), 10 ms (modulated 100 Hz carrier) and 1 ms (modulated 1 kHz carrier).

4.4 <u>Time Code Format E</u>

4.4.1 The 71-bit time code contains 26 bits of BCD time-of-year information in days, hours, minutes, and seconds, and 45 bits for control functions.

4.4.2 The BCD code (seconds subword) begins at index count 6 (LSB first). Binary coded bits occur between position identifier bits P_0 and P_5 : 3 for tens of seconds, 7 for minutes, 6 for hours, and 10 for days to complete the BCD word. An index marker occurs between the decimal digits in each subword to provide for visual resolution. The time code recycles yearly.

4.4.3 The control bits occur between position identifiers P_5 and P_0 .

4.4.4 The frame rate is 10 seconds with resolutions of 0.1 second (dc level), 10 ms (modulated 100 Hz carrier) and 1 ms (modulated 1 kHz carrier). The time code recycles yearly.

4.5 <u>Time Code Format G</u>

4.5.1 The 74-bit time code contains 38 bits of BCD time-of-year information in days, hours, minutes, seconds, and fractions of seconds, and 36 bits for control functions.

4.5.2 The BCD code (seconds subword) begins at index count 1 (LSB first). Binary coded bits occur between position identifier bits P_0 and P_6 : 7 for seconds, 7 for minutes, 6 for hours, 10 for days, 4 for tenths of seconds, and 4 for hundredths of seconds to complete the BCD word. An index marker occurs between the decimal digits in each subword (except fractional seconds) to provide for resolution. The time code recycles yearly.

4.5.3 The control bits occur between position identifiers P_6 and P_0 .

4.5.4 The frame rate is 10 ms with resolutions of 0.1 ms (dc level shift) and 10 μs (modulated 100 kHz carrier). The time code recycles yearly.

4.6 <u>Time Code Format H</u>

4.6.1 The 32-bit time code word contains 23 bits of BCD time-of-year information in days, hours, and minutes and 9 bits for control functions.

4.6.2 The BCD code (minutes subword) begins at index count 10 (LSB first) with binary coded bits occurring between position identifier bits P_1 and P_5 : 7 for minutes, 6 for hours, and 10 for days to complete the BCD word. An index marker occurs between decimal digits in each subword to provide separation for visual resolution. The time code recycles yearly.

4.6.3 The control bits occur between position identifiers P_5 and P_0 .

4.6.4 The frame rate is 1 minute with resolutions of 1 second (dc level shift), 10 ms (modulated 100 Hz carrier) and 1 ms (modulated 1 kHz carrier).

5.0 DETAILED DESCRIPTION OF TIME CODES

A detailed description of individual time code formats is described in the following paragraphs.

5.1 Format A, Signal A000

5.1.1 The beginning of each 0.1 second time frame is identified by two consecutive 0.8 ms bits, P_0 and P_r . The leading edge of P_r is the on-time reference point for the succeeding time code words. Position identifiers, P_0 and P_1 through P_9 , (0.8 ms duration) occur every 10th bit and 1 ms before the leading edge of each succeeding 100 pps "on-time" bit (see figure 2).

5.1.2 The two time code words and the control functions presented during the time frame are pulse width coded. The binary zero and index markers have a duration of 0.2 ms, and the binary one has a duration of 0.5 ms. The 1 k pps leading edge is the on-time reference point for all bits.

Figure 2. Format A: BCD time-of-year in days, hours, minutes, seconds, and fractions of seconds; straight binary seconds-of-day plus optional control bits.

5.1.3 The binary coded decimal (BCD) time-of-year code word consists of 34 bits beginning at index count one. The binary coded subword bits occur between position identifiers P_0 and P_5 : 7 for seconds, 7 for minutes, 6 for hours, 10 for days, and 4 for tenths of seconds to complete the time code word. An index marker occurs between the decimal digits in each subword, except tenths of seconds, to provide separation for visual resolution. The LSB occurs first except for the fractional seconds subword which follows the day-of-year subword. The BCD code recycles yearly. Each BCD bit position is identified on the time-of-year chart shown in table 2.

5.1.4 Twenty-seven control bits occur between position identifiers P_5 and P_8 . Any control function bit or combination of bits can be programmed to read a binary one or a binary zero during any specified number of time frames. Each control bit position is identified as shown in table 2.

5.1.5 The straight binary (SB) seconds-of-day code word occurs at index count 80 between position identifiers P_8 and P_0 . Seventeen bits give time-of-day in seconds with the LSB occurring first. A position identifier occurs between the 9th and 10th binary coded bits. The code recycles each 24-hour period. Each bit position is identified in table 2.

Pulse Rates	Pulse Duration
Bit rate: 1 k pps Position identifier rate: 100 pps Reference marker: 10 pps	Index marker: 0.2 ms Binary zero or uncoded bit: 0.2 ms Binary one or coded bit: 0.5 ms Position identifiers: 0.8 ms Reference bit: 0.8 ms

Resolution	Mark-To-Space Ratio
1 ms dc level	Nominal value of 10:3
0.1 ms modulated 10 kHz carrier	Range of 3:1 to 6:1

5.2 Format B, Signal B000

5.2.1 The beginning of each 1.0 second time frame is identified by two consecutive 8.0 ms bits, P_0 and P_r . The leading edge of P_r is the on-time reference point for the succeeding time code words. Position identifiers, P_0 and P_1 through P_9 , (8 ms duration) occur every 10th bit and 10 ms before the leading edge of each succeeding 10 pps "on-time" bit (see figure 3).

5.1.6

	TABLE 2. FORMAT A,SIGNAL A000													
	BCD TIME-OF-YEAR CODE (34 DIGITS)													
SEC	CONDS SUBW	ORD	MI	NUTES SUBW	ORD	НО	URS SUBW	ORD		DAYS AND	FRACTION	AL SECOND	SUBWORDS	-
BCD Code Digit No.	Subword Digit Wt SECONDS	BIT Time (Note 1)	BCD Code Digit No.	Subword Digit Wt MINUTES	BIT Time	BCD Code Digit No.	Subword Digit Wt HOURS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time
Refere	ence BIT	Pr	8	1	P _r + 10 ms	15	1	$P_r + 20 ms$	21	1	P_r + 30 ms	29	100	P_r + 40 ms
1	1	$P_r + 1 ms$	9	2	P _r + 11 ms	16	2	$P_r + 21 ms$	22	2	P _r + 31 ms	30	200	P _r + 41 ms
2	2	$P_r + 2 ms$	10	4	P _r + 12 ms	17	4	P_r + 22 ms	23	4	P_r + 32 ms	Inde	x BIT	$P_r + 42 ms$
3	4	$P_r + 3 ms$	11	8	P _r + 13 ms	18	8	P_r + 23 ms	24	8	P _r + 33 ms	Inde	x BIT	$P_r + 43 ms$
4	8	$P_r + 4 ms$	Ind	ex BIT	$P_r + 14 ms$	Inde	k BIT	$P_r + 24 ms$	Index	k BIT	$P_r + 34 ms$	Inde	x BIT	$P_r + 44 ms$
Inde	ex BIT	$P_r + 5 ms$	12	10	$P_r + 15 ms$	19	10	$P_r + 25 ms$	25	10	$P_r + 35 ms$	31	0.1	$P_r + 45 ms$
5	10	$P_r + 6 ms$	13	20	P _r + 16 ms	20	20	P_r + 26 ms	26	20	$P_r + 36 ms$	32	0.2	$P_r + 46 ms$
6	20	$P_r + 7 ms$	14	40	P _r + 17 ms	Inde	k BIT	$P_r + 27 ms$	27	40	P _r + 37 ms	33	0.4	P _r + 47 ms
7	40	$P_r + 8 ms$	Index BIT		P _r + 18 ms	Inde	k BIT	P_r + 28 ms	28	80	P _r + 38 ms	34	0.8	P _r + 48 ms
Position	Ident. (P1)	$P_r + 9 ms$	Position	Ident. (P2)	$P_r + 19 ms$	Position I	dent. (P ₃)	P_r + 29 ms	Position I	dent. (P4)	P_r + 39 ms	Position 1	ldent. (P₅)	$P_r + 49 ms$

CONTROL FUNCTIONS (27 BITS)									
Control Function BIT	BIT Time	Control Function BIT	BIT Time	Control Function BIT	BIT Time				
1	P_r + 50 ms	10	P_r + 60 ms	19	P_r + 70 ms				
2	P_r + 51 ms	11	P_r + 61 ms	20	P _r + 71 ms				
3	P_r + 52 ms	12	P_r + 62 ms	21	P_r + 72 ms				
4	P_r + 53 ms	13	P_r + 63 ms	22	P_r + 73 ms				
5	P_r + 54 ms	14	P_r + 64 ms	23	P _r + 74 ms				
6	P_r + 55 ms	15	P_r + 65 ms	24	P_r + 75 ms				
7	P_r + 56 ms	16	P_r + 66 ms	25	P_r + 76 ms				
8	P_r + 57 ms	17	$P_r + 67 ms$	26	P_r + 77 ms				
9	P _r + 58 ms	18	P _r + 68 ms	27	P _r + 78 ms				
Position Ident. (P ₆)	P_r + 59 ms	Position Ident. (P7)	P_r + 69 ms	Position Ident. (P ₈)	P_r + 79 ms				

S	STRAIGHT BINARY SECONDS TIME-OF-DAY CODE (17 DIGITS)										
SB Code BIT	Subword Digit Weight	BIT Time	SB Code BIT	Subword Digit Weight	BIT Time						
1	$2^0 = (1)$	P _r + 80 ms	10	$2^9 = (512)$	$P_r + 90 ms$						
2	$2^1 = (2)$	P _r + 81 ms	11	$2^{10} = (1024)$	$P_r + 91 ms$						
3	$2^2 = (4)$	P_r + 82 ms	12	$2^{11} = (2048)$	P_r + 92 ms						
4	$2^3 = (8)$	P_r + 83 ms	13 $2^{12} = (4096)$		P _r + 93 ms						
5	$2^4 = (16)$	P _r + 84 ms	14	2 ¹³ = (8192)	$P_r + 94 ms$						
6	$2^5 = (32)$	P_r + 85 ms	15	214=(16384)	$P_r + 95 ms$						
7	$2^6 = (64)$	P_r + 86 ms	16	215=(32768)	$P_r + 96 ms$						
8	$2^7 = (128)$	P_r + 87 ms	17	216=(65536)	P_r + 97 ms						
9	$2^8 = (256)$	P _r + 88 ms	Inde	ex BIT	$P_r + 98 ms$						
Position	Ident. (P ₉)	P_r + 89 ms	Position	Ident. (P ₀)	$P_r + 99 ms$						

Note 1: The BIT Time is the time of the BIT leading edge and refers to the leading edge of Pr.

Figure 3. Format B: BCD time-of-year in days, hours, minutes and seconds; straight binary seconds-of-day plus optional control bits.

5.2.2 The two time code words and the control functions presented during the time frame are pulse width coded. The binary zero and the index markers have a duration of 2.0 ms, and a binary one has a duration of 5.0 ms. The 100 pps leading edge is the on-time reference point for all bits.

5.2.3 The BCD time-of-year code word consists of 30 bits beginning at index count one. The subword bits occur between position identifiers P_0 and P_5 : 7 for seconds, 7 for minutes, 6 for hours, and 10 for days to complete the BCD time code word. An index marker occurs between the decimal digits in each subword to provide separation for visual resolution. The LSB occurs first. The code recycles yearly. Each bit position is identified in table 3.

5.2.4 Twenty-seven control functions occur between position identifiers P_5 and P_8 . Any control function bit or combination of bits can be programmed to read a binary one or zero during any specified number of time frames. Each control bit position is identified in table 3.

5.2.5 The SB seconds-of-day code word occurs between position identifiers P8 and P0. Seventeen bits give time-of-day in seconds with the LSB occurring first. A position identifier occurs between the 9th and 10th binary coded bit. The code recycles each 24-hour period. Each bit position is identified as shown in table 3.

Pulse Rates	Pulse Duration
Bit rate: 100 pps Position identifier: 10 pps Reference mark: 1 pps	Index marker: 2 ms Binary zero or uncoded bit: 2 ms Binary one or coded bit: 5 ms Position identifiers: 8 ms Reference bit: 8 ms

5.2.6

Resolution	Mark-To-Space Ratio
10 ms dc level	Nominal value of 10:3
1 ms modulated 1 kHz carrier	Range of 3:1 to 6:1

	TABLE 3. FORMAT B, SIGNAL B000														
L	BCD TIME-OF-YEAR CODE (30 DIGITS)														
SEC	ONDS SUBV	VORD	М	INUTES SUB	WORD	Н	OURS SUB	WORD			1	DAYS	SUBWORE)	
BCD Code Digit No.	Subword Digit Wt SECONDS	BIT Time (Note 1)	BCD Code Digit No.	Subword Digit Wt MINUTES	BIT Time	BCD Code Digit No.	Subword Digit Wt HOURS	rd BIT Time /t S		BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time
Refere	ence BIT	Pr	8	1	P _r + 100 ms	15	1	Pr + 20	0 ms	21	1	Pr + 300 ms	29	100	$P_r + 400 \text{ ms}$
1	1	P _r + 10 ms	9	2	P _r + 110 ms	16	2	P _r + 21	0 ms	22	2	P _r + 310 ms	30	200	P_r + 410 ms
2	2	P _r + 20 ms	10	4	P _r + 120 ms	17	4	Pr + 22	0 ms	23	4	P _r + 320 ms	Inde	ex BIT	P_r + 420 ms
3	4	P _r + 30 ms	11	8	P _r +130 ms	18	8	P _r + 23	0 ms	24	8	P_r + 330 ms	Inde	ex BIT	P_r + 430 ms
4	8	P _r + 40 ms	Ine	dex BIT	P _r + 140 ms	Ind	ex BIT	P _r + 24	0 ms	Inde	ex BIT	P_r + 340 ms	Inde	ex BIT	P_r + 440 ms
Inde	ex BIT	P _r + 50 ms	12	10	P _r + 150 ms	19	10	P _r + 25	0 ms	25	10	Pr + 350 ms	Inde	ex BIT	P_r + 450 ms
5	10	P _r + 60 ms	13	20	P _r + 160 ms	20	20	P _r + 26	0 ms	26	20	Pr + 360 ms	Inde	ex BIT	P_r + 460 ms
6	20	P _r + 70 ms	14	40	P _r + 170 ms	Ind	ex BIT	Pr + 27	0 ms	27	40	P_r + 370 ms	Index BIT		$P_r + 470 \text{ ms}$
7	40	P _r + 80 ms	Ine	dex BIT	P _r + 180 ms	Ind	ex BIT	P _r + 28	0 ms	28	80	P _r + 380 ms	Inde	P_r + 480 ms	
Position	Ident. (P1)	P _r + 90 ms	Positio	n Ident. (P2)	P _r + 190 ms	Position	Ident. (P ₃)	P _r + 29	0 ms	Position	Ident. (P ₄)	P_r + 390 ms	Position	Ident. (P ₅)	P_r + 490 ms
		CONTRO	L FUNC	TIONS (27 BI	ГS)			Г		STRA	IGHT BINAI	RY SECONDS T	IME-OF-DA	Y CODE (17 D	(GITS)
Control Function BIT	BIT Ti	ime Co Fui	ontrol nction BIT	BIT Time	Control Function BIT	BIT T	lime		SB Co BIT	de S Dig	ubword it Weight	BIT Time	SB Code BIT	Subword Digit Weight	BIT Time
1	$P_{r} + 500$) ms	10	P_r + 600 ms	19	$P_{r} + 70$	00 ms	_	1	20) = (1)	$P_r + 800 ms$	10	$2^9 = (512)$	$P_r + 900 \text{ ms}$
2	Pr+ 510) ms	11	$P_{\rm r}$ + 610 ms	20	Pr+71	l0 ms		2	21	= (2)	$P_r + 810 ms$	11	$2^{10} = (1024)$	P_r + 910 ms
3	Pr+ 520) ms	12	P_r + 620 ms	21	$P_{r} + 72$	20 ms		3	22	= (4)	P_r + 820 ms	12	211 = (2048)	P_r + 920 ms
4	$P_{r} + 530$) ms	13	$P_{\rm r}$ + 630 ms	22	$P_{r} + 73$	30 ms		4	2 ³	= (8)	P_r + 830 ms	13	$2^{12} = (4096)$	P_r + 930 ms
5	$P_{r} + 540$) ms	14	P_r + 640 ms	23	$P_{r} + 74$	40 ms		5	24	= (16)	$P_r + 840 ms$	14	213 = (8192)	P_r + 940 ms
6	$P_{r} + 550$) ms	15	P_r + 650 ms	24	$P_{r} + 75$	50 ms		6	25	= (32)	$P_r + 850 ms$	15	214=(16384)	$P_r + 950 ms$
7	$P_{r} + 560$) ms	16	P_r + 660 ms	25	Pr + 76	60 ms		7	26	= (64)	P_r + 860 ms	16	215=(32768)	P_r + 960 ms
8	Pr+ 570) ms	17	P_r + 670 ms	26	Pr + 77	70 ms		8	27	= (128)	$P_r + 870 ms$	17	216=(65536)	P _r + 970 ms
9	Pr+ 580) ms	18	P_r + 680 ms	27	Pr + 78	30 ms		9	28	= (256)	Pr + 880 ms	Inc	lex BIT	P _r + 980 ms
Positior Ident. (P	$P_r + 590_{6}$) ms Po Ider	sition nt. (P7)	P _r + 690 ms	Position Ident. (P ₈)	P _r + 79	90 ms		Pos	sition Ider	nt. (P ₉)	$P_{\rm r}$ + 890 ms	Position	n Ident. (P ₀)	P _r + 990 ms
Note 1: T	he BIT Time	is the time o	f the BIT	leading edge a	and refers to t	he leading	g edge of Pr								

5.3 Format D, Signal D001

5.3.1 The beginning of each 2-hour time frame is identified by two consecutive 48-second bits, P_0 and P_r . The leading edge of P_r is the on-time point for the succeeding time code word. Position identifiers, P_0 and P_1 through P_5 , occur every 10th bit and one minute before the leading edge of each succeeding 6 pph on-time bit (see figure 4).

5.3.2 The time code word and the control bits presented during the time frame are pulse width coded. The binary zero and the index markers have a duration of 12 seconds and the binary one has a duration of 30 seconds. The 1 ppm leading edge is the on-time reference point for all bits.

5.3.3 The BCD time-of-year code consists of 16 bits beginning at index count 20. The subword bits occur between position identifiers P_2 and P_5 : 6 for hours and 10 for days to complete the time code word. An index marker occurs between the decimal digits in each subword to provide separation for visual resolu-tion. The LSB occurs first. The code recycles yearly. Each bit position is identified in table 4.

5.3.4 Nine control bits occur between position identifiers P_5 and P_0 . Any control function bit or combination of bits can be programmed to read a binary one or zero during any specified number of time frames. Each control bit position is identified in table 4.

Pulse Rate	Pulse Duration
Bit rate: 1 ppm Position identifiers: 6 pph Reference mark: 1 pph	Index marker: 12 s Binary zero or uncoded bit: 12 s Binary one or coded bit: 30 s Position identifiers: 48 s Reference bit: 48 s

5.3.5

Resolution	Mark-To-Space Ratio
1 m dc level 10 ms modulated 100 Hz carrier 1 ms modulated 1 kHz carrier	Nominal value of 10:1 Range of 3:1 to 6:1

Figure 4. Format D: BCD time-of-year in days and hours plus optional control bits.

	TABLE 4. FORMAT D, SIGNAL D001														
	BCD TIME-OF-YEAR CODE (16 DIGITS)														
		MINUTES	SUBWOR	RD		ŀ	IOURS SUB	WORD			DAYS SU	JBWORD			
BCD Code Digit No.	Subword Digit Wt MINUTES	BIT Time (Note 1)	BCD Code Digit No.	Subword Digit Wt MINUTES	BIT Time	BCD Code Digit No.	Subword Digit Wt HOURS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time	
Refer	ence BIT	\mathbf{P}_{r}	Inde	ex Marker	P _r + 10 min	1	1	P_r + 20 min	7	1	P_r + 30 min	15	15 100 P _r + 4		
Index	Marker	P _r +1 min	Inde	ex Marker	P _r +11 min	2	2	P_r + 21 min	8	2	P_r + 31 min	16	16 200 P _r		
Index	Marker	$P_r + 2 \min$	Inde	ex Marker	P _r +12 min	3	4	P_r + 22 min	9	4	P_r + 32 min	Index	Marker	$P_r + 42 \min$	
Index	. Marker	$P_r + 3 \min$	Inde	ex Marker	P _r +13 min	4	8	P_r + 23 min	10	8	P_r + 33 min	Index	Marker	$P_r + 43 \min$	
Index	« Marker	$P_r + 4 \min$	Inde	ex Marker	$P_r + 14 \min$	Index	Marker	P_r + 24 min	Inde	x BIT	P_r + 34 min	Index	Marker	P_r + 44 min	
Index	. Marker	P _r +5 min	Inde	ex Marker	$P_r + 15 min$	5	10	P_r + 25 min	11	10	P _r + 35 min	Index	Marker	$P_r + 45 \min$	
Index	k Marker	$P_r + 6 \min$	Inde	ex Marker	P _r + 16 min	6	20	P_r + 26 min	12	20	P _r + 36 min	Index Marker P		P_r + 46 min	
Index	Marker	P _r +7 min	Inde	ex Marker	P _r +17 min	Index	Marker	$P_r + 27 min$	13	40	P _r + 37 min	Index	Marker	$P_r + 47 min$	
Index	« Marker	$P_r + 8 \min$	Inde	ex Marker	P_r + 18 min	Index	Marker	P_r + 28 min	14	80	$P_{\rm r}$ + 38 min	Index	Marker	$P_r + 48 \min$	
Position	Ident. (P1)	$P_r + 9 \min$	Positio	n Ident. (P ₂)	P_r + 19 min	Position	Ident. (P ₃)	$P_r + 29 \min$	Position	Ident. (P ₄)	P _r +39 min	Positior	Ident. (P5)	$P_r + 49 \min$	

CONTROL F (9 Bl	TUNCTIONS ITS)
Control Function BIT	BIT Time
1	P_r + 50 min
2	P_r + 51 min
3	P_r + 52 min
4	$P_{\rm r}$ + 53 min
5	$P_r + 54 \min$
6	P_r + 55 min
7	P_r + 56 min
8	P_r + 57 min
9	P_r + 58 min
Position Ident. (P ₀)	P_r + 59 min
Note 1: The BIT	Time is the time of

5.4 Format E, Signal E001

5.4.1 The beginning of each 10 second time frame is identified by two consecutive 80 ms bits, P_0 and P_r . The leading edge of P_r is the on-time reference point for the succeeding time code. Position identifiers, P_0 and P_1 through P_9 , occur every 10th bit and 0.1 seconds before the leading edge of each succeeding 1 pps on-time bit (see figure 5).

5.4.2 The time code word and control functions presented during the timeframe are pulse width coded. The binary zero and index markers have a duration of 20 ms, and the binary one has a duration of 50 ms. The 10 pps leading edge is the on-time reference point for all bits.

5.4.3 The BCD time-of year code word consists of 26 bits beginning at index count 6. The code subword bits occur between position identifiers P_0 and P_5 : 3 for seconds, 7 for minutes, 6 for hours, and 10 for days, to complete the time code word. An index marker occurs between the decimal digits in each subword to provide separation for visual resolution. The LSB occurs first. The code recycles yearly. Each bit position is identified in table 5.

5.4.4 Forty-five control functions occur between position identifiers P_5 and P_0 . Any control function bit or combination of bits can be programmed to read a binary one or zero during any specified number of time frames. Each control bit position is identified in table 5.

Pulse Rate	Pulse Duration
Bit rate: 10 pps Position identifier: 1 pps Reference mark: 6 ppm	Index marker: 20 ms Binary zero or uncoded bit: 20 ms Binary one or coded bit: 50 ms Position identifier: 80 ms Reference bit: 80 ms

5.4.5

Resolution	Mark-To-Space Ratio
0.1 s dc level 10 ms modulated 100 kHz carrier 1 ms modulated 1 kHz carrier	Nominal value of 10:3 Range of 3:1 to 6:1

Figure 5. Format E: BCD time-of-year in days, hours, minutes and seconds plus optional control bits.

	TABLE 5. FORMAT E, SIGNAL E001													
	BCD TIME-OF-YEAR CODE (26 DIGITS)													
SEC	CONDS SUB	WORD	MI	NUTES SUB	WORD	ŀ	HOURS SUB	VORD			DAYS S	UBWORD	-	
BCD Code Digit No.	Subword Digit Wt SECONDS	BIT Time (Note 1)	BCD Code Digit No.	Subword Digit Wt MINUTES	BIT Time	BCD Code Digit No.	Subword Digit Wt HOURS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time
Refere	ence BIT	Pr	4	1	P _r + 1.0 sec	11	1	P_r + 2.0 sec	17	1	P_r + 3.0 sec	25	100	P_r + 4.0 sec
Index	Marker	$P_r + 0.1 \text{ sec}$	5	2	P _r + 1.1 sec	12	2	P_r + 2.1 sec	18	2	P_r + 3.1 sec	26	200	P_r + 4.1 sec
Index	Marker	P _r + 0.2 sec	6	4	Pr + 1.2 sec	13	4	P_r + 2.2 sec	19	4	P_r + 3.2 sec	Index	Marker	P_r + 4.2 sec
Index	Marker	Pr + 0.3 sec	7	8	Pr + 1.3 sec	14	8	P_r + 2.3 sec	20	8	P_r + 3.3 sec	Index	Marker	P_r + 4.3 sec
Index	Marker	$P_r + 0.4 sec$	Index	Marker	Pr + 1.4 sec	Inde	x Marker	$P_r + 2.4 sec$	Index	Marker	P_r + 3.4 sec	Index	Marker	P_r + 4.4 sec
Index	Marker	$P_r + 0.5 sec$	8	10	P _r + 1.5 sec	15	10	P_r + 2.5 sec	21	10	P_r + 3.5 sec	Index	Marker	$P_r + 4.5 \text{ sec}$
1	10	P _r + 0.6 sec	9	20	P _r + 1.6 sec	16	20	P_r + 2.6 sec	22	20	P_r + 3.6 sec	Index	Marker	P_r + 4.6 sec
2	20	Pr + 0.7 sec	10	40	Pr + 1.7 sec	Inde	x Marker	P _r +2.7 sec	23	40	P _r + 3.7 sec	Index	Marker	$P_r + 4.7 \text{ sec}$
3	40	Pr + 0.8 sec	Index	Marker	Pr + 1.8 sec	Inde	x Marker	P_r + 2.8 sec	24	80	P _r + 3.8 sec Index Marker		$P_r + 4.8 sec$	
Position	Ident. (P1)	$P_r + 0.9 sec$	Position	Ident. (P2)	P _r + 1.9 sec	Position	n Ident. (P3)	P_r + 2.9 sec	Position	Ident. (P ₄)	P_r + 3.9 sec	Position	Ident. (P5)	P_r + 4.9 sec

	CONTROL FUNCTIONS (45 BITS)												
Control Function BIT	BIT Time	Control Function BIT	BIT Time	Control Function BIT	BIT Time	Control Function BIT	BIT Time	Control Function BIT	BIT Time				
1	P_r + 5.0 sec	10	P_r + 6.0 sec	19	P _r + 7.0 sec	28	P_r + 8.0 sec	37	P_r + 9.0 sec				
2	P_r + 5.1 sec	11	P_r + 6.1 sec	20	P_r + 7.1 sec	29	P _r +8.1 sec	38	P_r + 9.1 sec				
4	P_r + 5.2 sec	12	P_r + 6.2 sec	21	P _r + 7.2 sec	30	Pr + 8.2 sec	39	P_r + 9.2 sec				
3	P_r + 5.3 sec	13	P_r + 6.3 sec	22	Pr + 7.3 sec	31	Pr + 8.3 sec	40	P_r + 9.3 sec				
5	P_r + 5.4 sec	14	$P_r + 6.4 sec$	23	Pr + 7.4 sec	32	Pr+8.4 sec	41	P_r + 9.4 sec				
6	P_r + 5.5 sec	15	$P_r + 6.5 sec$	24	P _r + 7.5 sec	33	P_r + 8.5 sec	42	P_r + 9.5 sec				
7	P_r + 5.6 sec	16	P_r + 6.6 sec	25	P _r + 7.6 sec	34	P _r + 8.6 sec	43	P_r + 9.6 sec				
8	P _r + 5.7 sec	17	$P_r + 6.7 sec$	26	P _r + 7.7 sec	35	Pr + 8.7 sec	44	P_r + 9.7 sec				
9	P _r + 5.8 sec	18	P_r + 6.8 sec	27	P _r + 7.8 sec	36	Pr+ 8.8 sec	45	P _r + 9.8 sec				
Position Ident. (P ₆)	P _r + 5.9 sec	Position Ident. (P7)	$P_r + 6.9 sec$	Position Ident. (P ₈)	P_r + 7.9 sec	Position Ident. (P9)	P_r + 8.9 sec	Position Ident (P ₀)	P_r + 9.9 sec				

Note 1: The BIT Time is the time of the BIT leading edge and refers to the leading edge of Pr

5.5 Format G, Signal G001

5.5.1 The beginning of each 0.01 second time frame is identified by two consecutive 80 μ s bits, P₀ and P_r. The leading edge of P_r is the on-time reference point for the succeeding time code. Position identifiers, P₀ and P₁ through P₉, occur every 10th bit, 0.1 ms before the leading edge of each succeeding 1 k pps on-time bit (see figure 6).

5.5.2 The time code word and the control functions presented during the time frame are pulse width coded. The binary zero and index markers have durations of 20 μ s, and the binary one has a duration of 50 μ s. The 10 k pps leading edge is the on-time reference point for all bits.

5.5.3 The BCD time-of-year code word consists of 38 bits beginning at index count one. The subword bits occur between position identifiers P_0 and P_6 : 7 for seconds, 7 for minutes, 6 for hours, 10 for days, 4 for tenths of seconds, and 4 for hundredths of seconds to complete the time code word. An index marker occurs between the decimal digits in each subword, except for fractional seconds, to provide visual separation. The LSB occurs first, except for the fractional second information which follows the day-of-year information. The code recycles yearly. Each bit position is identified in table 6.

5.5.4 Thirty-six control bits occur between position identifiers P_6 and P_0 . Any control function bit or combination of bits can be programmed to read a binary one or zero during any specified number of time frames. Each control bit position is identified in table 6.

Pulse Rate	Pulse Duration
Bit rate: 10 k pps Position identifier: 1 k pps Reference marker: 100 pps	Index marker: 20 μs Binary zero or uncoded bit: 20 μs Binary one or coded bit: 50 μs Position identifiers: 80 μs Reference bit: 80 μs

5.5.5)
-------	---

Resolution	Mark-To-Space Ratio
0.1 ms dc level	Nominal value of 10:3
10 μs modulated 100 kHz	Range of 3:1 to 6:1 carrier

Figure 6. Format G: BCD time-of-year in days, hours, minutes, seconds, and fractions of seconds plus optional control bits.

	TABLE 6. FORMAT G, SIGNAL G001													
	BCD TIME-OF-YEAR CODE (38 DIGITS)													
SEC	ONDS SUBV	VORD	MI	NUTES SUB	WORD	HOURS SUBWORD DAYS AND			ND FRACTION	JD FRACTIONAL SECOND SUBWORD				
BCD Code Digit No.	Subword Digit Wt SECONDS	BIT Time (Note 1)	BCD Code Digit No.	Subword Digit Wt MINUTES	BIT Time	BCD Code Digit No.	Subword Digit Wt HOURS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time
Refere	nce BIT	Pr	8	1	Pr+ 1.0 ms	15	1	P _r + 2.0 ms	21	1	$P_r + 3.0 ms$	29	100	P_r + 4.0 ms
1	1	P _r + 0.1 ms	9	2	P _r + 1.1 ms	16	2	P_r + 2.1 ms	22	2	P_r + 3.1 ms	30	200	P_r + 4.1 ms
2	2	$P_r + 0.2 ms$	10	4	P_{r} + 1.2 ms	17	4	$P_{r} + 2.2 ms$	23	4	$P_{r} + 3.2 ms$	Inde	k BIT	P_r + 4.2 ms
3	4	$P_r + 0.3 ms$	11	8	P _r + 1.3 ms	18	8	P_r + 2.3 ms	24	8	P_r + 3.3 ms	Inde	k BIT	P_r + 4.3 ms
4	8	$P_r + 0.4 ms$	Ind	ex BIT	$P_r + 1.4 ms$	Inc	lex BIT	$P_r + 2.4 ms$	Index BIT		$P_r + 3.4 ms$	Inde	k BIT	P_r + 4.4 ms
Inde	ex Bit	$P_r + 0.5 ms$	12	10	$P_r + 1.5 ms$	19	10	$P_r + 2.5 ms$	25	10	$P_r + 3.5 ms$	31	0.1	P_r + 4.5 ms
5	10	$P_r + 0.6 ms$	13	20	P_r + 1.6 ms	20	20	$P_r + 2.6 ms$	26	20	$P_r + 3.6 ms$	32	0.2	P_r + 4.6 ms
6	20	P _r + 0.7 ms	14	40	P _r +1.7 ms	Inc	Index BIT		27	40	$P_{r} + 3.7 ms$	33	0.4	P _r + 4.7 ms
7	40	$P_r + 0.8 ms$	Ind	ex BIT	P _r + 1.8 ms	Index BIT		P _r + 2.8 ms	28	80	$P_r + 3.8 ms$	34	0.8	P _r + 4.8 ms
Position	Ident. (P1)	$P_r + 0.9 ms$	Position	Ident. (P2)	P _r + 1.9 ms	Position Ident. (P ₃)		P_r + 2.9 ms	Position Ident. (P ₄)		P_r + 3.9 ms	Position 1	dent. (P5)	$P_r + 4.9 ms$

BCD TIME-OF-YEAR CODE (Cont'd)										
FRACTIO	FRACTIONAL SECOND SUB-WORD									
BCD Code Digit No.	BCD Code Subword Digit Digit No. Wt SECONDS									
35	35 0.01									
36	36 0.02									
37	37 0.04									
38	0.08	P_r + 5.3 ms								
Inde	Index BIT									
Inde	ex BIT	P_r + 5.5 ms								
Inde	ex BIT	P_r + 5.6 ms								
Inde	Index BIT									
Inde	P _r + 5.8 ms									
Position	Ident. (P ₆)	P_r + 5.9 ms								

	CONTROL FUNCTIONS (36 BITS)									
Control Function BIT	BIT Time	Control Function BIT	BIT Time	Control Function BIT	BIT Time	Control Function BIT	BIT Time			
1	$P_{\rm r}$ + 6.0 ms	10	P_r + 7.0 ms	19	$P_{\rm r}$ + 8.0 ms	28	P_r + 9.0 ms			
2	$P_r + 6.1 ms$	11	$P_{r} + 7.1 ms$	20	P _r + 8.1 ms	29	P_r + 9.1 ms			
3	P_r + 6.2 ms	12	$P_{\rm r}$ + 7.2 ms	21	P_r + 8.2 ms	30	P_r + 9.2 ms			
4	P_r + 6.3 ms	13	P_r + 7.3 ms	22	P_r + 8.3 ms	31	P_r + 9.3 ms			
5	P_r + 6.4 ms	14	$P_{r} + 7.4 ms$	23	P_r + 8.4 ms	32	P_r + 9.4 ms			
6	$P_r + 6.5 ms$	15	P_r + 7.5 ms	24	P_r + 8.5 ms	33	P_r + 9.5 ms			
7	P_r + 6.6 ms	16	P_r + 7.6 ms	25	P_r + 8.6 ms	34	P _r + 9.6 ms			
8	P_r + 6.7 ms	17	P_r + 7.7 ms	26	P_r + 8.7 ms	35	P_r + 9.7 ms			
9	P_r + 6.8 ms	18	$P_{\rm r}$ + 7.8 ms	27	P_{r} + 8.8 ms	36	P _r + 9.8 ms			
Position Ident. (P7)	$P_{\rm r}$ + 6.9 ms	Position Ident. (P ₈)	P_r + 7.9 ms	Position Ident. (P9)	P_r + 8.9 ms	Position Ident. (P ₀)	P_r + 9.9 ms			

5.6 Format H, Signal H001

5.6.1 The beginning of each 1-minute time frame is identified by two consecutive 0.8 second bits, P_0 and P_r . The leading edge of P_r is the on-time reference point for the succeeding time code. Position identifiers P_0 and P_1 through P_5 , occur every 10th bit one second before the leading edge of each succeeding 6 ppm on-time bit (see figure 7).

5.6.2 The time code word and the control functions presented during the time frame are pulse width coded. The binary zero and the index markers have a duration of 0.2 seconds, and a binary one has a duration of 0.5 seconds. The leading edge is the 1 pps on-time reference point for all bits.

5.6.3 The BCD time-of-year consists of 23 bits beginning at index count 10. The subword bits occur between position identifiers P_0 and P_5 : 7 for minutes, 6 for hours, and 10 for days to complete the time code word. An index marker occurs between the decimal digits in each subword to provide separation for visual resolution. The LSB occurs first. The code recycles yearly. Each bit position is identified in table 7.

5.6.4 Nine control functions occur between position identifiers P_5 and P_0 . Any control function bit or combination of bits can be programmed to read a binary one or zero during any specified number of time frames. Each control function position is identified in table 7.

Pulse Rate	Pulse Duration
Bit rate: 1 pps Position identifier: 6 ppm Reference marker: 1 ppm	Index marker: 0.2 s Binary zero or uncoded bit: 0.2 s Binary one or coded bit: 0.5 s Position identifiers: 0.8 s Reference bit: 0.8 s

5.6.5

Resolution	Mark-To-Space Ratio				
1 s dc level 10 ms modulated 100 Hz carrier 1 ms modulated 1 kHz carrier	Nominal value of 10:3 Range of 3:1 to 6:1				

Figure 7. Format H: BCD time-of-year in days, hours and minutes plus optional control bits.

	TABLE 7. FORMAT H, SIGNAL H001													
	BCD TIME-OF-YEAR CODE (23 DIGITS)													
			MI	NUTES SUB	WORD	HOURS SUBWORD			DAYS SUBWORD					
BCD Code Digit No.	Subword Digit Wt SECONDS	BIT Time (Note 1)	BCD Code Digit No.	Subword Digit Wt MINUTES	BIT Time	BCD Code Digit No.	Subword Digit Wt HOURS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time	BCD Code Digit No.	Subword Digit Wt DAYS	BIT Time
Refe	rence BIT	Pr	1	1	P_r + 10 sec	8	1	P_r + 20 sec	14	1	Pr + 30 sec	22	100	P_r + 40 sec
Inde	x Marker	$P_r + 1 sec$	2	2	$P_r + 11 sec$	9	2	P_r + 21 sec	15	2	P_r + 31 sec	33	200	$P_r + 41 sec$
Inde	x Marker	$P_r + 2 sec$	3	4	$P_r + 12 sec$	10	4	P_r + 22 sec	16	4	P_r + 32 sec	Index I	Marker	P_r + 42 sec
Inde	x Marker	$P_r + 3 sec$	4	8	Pr + 13 sec	11	8	P_r + 23 sec	17	8	Pr + 33 sec	Index I	Marker	P_r + 43 sec
Inde	x Marker	$P_r + 4 sec$	Index	Marker	$P_r + 14 sec$	Index I	Marker	$P_r + 24 sec$	Index I	Marker	$P_r + 34 sec$	Index I	Marker	$P_r + 44 \text{ sec}$
Inde	x Marker	$P_r + 5 sec$	5	10	P _r + 15 sec	12	10	P_r + 25 sec	18	10	P_r + 35 sec	Index I	Marker	$P_r + 45 \text{ sec}$
Inde	x Marker	$P_r + 6 sec$	6	20	$P_r + 16 sec$	13	20	P_r + 26 sec	19	20	P_r + 36 sec	Index I	Marker	$P_r + 46 \text{ sec}$
Inde	x Marker	$P_r + 7 sec$	7	40	$P_r + 17 \text{ sec}$	Index Marker		$P_r + 27 \text{ sec}$	20	40	P _r + 37 sec	Index 1	Marker	$P_r + 47 \text{ sec}$
Inde	x Marker	$P_r + 8 sec$	Index	Marker	Pr + 18 sec	Index Marker		Pr + 28 sec	21	80	Pr + 38 sec	Index I	Marker	Pr + 48 sec
Position	n Ident. (P1)	$P_r + 9 sec$	Position	Ident. (P2)	P _r + 19 sec	Position I	dent. (P3)	P_r + 29 sec	Position I	dent. (P4)	Pr + 39 sec	Position I	dent. (P5)	$P_r + 49 \text{ sec}$

CONTROL FUNCTIONS (9 BITS)						
Control Function BIT	BIT Time					
1	$P_r + 50 sec$					
2	$P_r + 51 sec$					
3	P_r + 52 sec					
4	P_r + 53 sec					
5	$P_r + 54 sec$					
6	$P_r + 55 sec$					
7	$P_r + 56 sec$					
8	$P_r + 57 sec$					
9	$P_r + 58 sec$					
Position Ident. (P ₀)	$P_{\rm r}$ + 59 sec					

Note 1: The BIT Time is the time of the BIT leading edge and refers to the leading edge of $P_{\rm r}$