How to program the Fast Amplifiers

Ivo Carvalho,

2010



introduction

The Fast Amplifiers were programmed in Assembly using the MPLAB program supplied
freely by Microchiptm . the micro-controller used is the DsPIC30F2020 which belongs to the
Switched Mode Power Supply (SMPS) dspic30F product family. The datasheet can be found in
http://ww1.microchip.com/downloads/en/DeviceDoc/70178C.pdf

In order to program the Fast Amplifiers without damaging the system, you should verify
that noting else is connected besides the corresponding top 5V switch of the FA that you're
attempting to program. All the other voltages in the circuit should be 0V, because when
programming the micro-controller, the outputs are in a unstable state and that could lead to
destruction of the power circuit if there energy stored in it.

This tutorial is organized in simple steps with several key images to help in the interpretation
of the steps.

1st Step: setting up the system

Install the most recent version of MPLAB (currently 8.53). It can be found in the following link:
http://www.microchip.com/stellent/idcplg?

IdcService=SS_GET_PAGE&nodeld=1406&dDocName=en019469&part=SW007002

2nd Step: project wizard

Create a new project or use an existing one with assembly and DsPIC30F2020



Welcome! J Checksum: 0xd269

This wizard helps you create or configure @ new MPLAE IDE
project

dsPIC30F2020 cabsabIlP0  dcnovic

Then select the DsPIC30F2020 (this is the dspic used in the FA controllers and also on the
thyristors control board.

J Checksum: 0xd269

oabsabIP0  denovzc

After selecting the dspic for the project MPLAB will prompt for the tool-suit for programming.
It should be selected the Microchip ASM30 Toolsuite, then in the same menu the Assembler,



linker and archiver programs should be indicated to the wizard (these .exe are found in the
MPLAB installation dir, find the files as in the following figure). This files are named: pic30-
as.exe , pic30-ld.exe and pic30-ar.exe .

[ MPLAB IDE v8.53 - Untitled Workspace

File Edit View Project Debugger Programmer Tools' Configure Window Help

|D@d|sma|ZANER 2 | |HeEdled

J Checksum: 0xd269

T Untitled Workspace

Step Two:
Select a language toolsute:

Active Toolsuite: Microchip A5M30 Tookuite

P
MPLAE LIMK30 Dbi
LIB30 Archiver [pic3

Fies | % Symbols|

Help! My Suite lsn't Listed! Show allinstalled toolsuites

dsPIC30F2020 oabsabIP)  denovzc

After this you will be prompted to add files, download the source code file on CDAQ (.s
extension) and then locate it on your hard drive.

3rd Step: adding header files and linker script

After the project wizard, you should visualize your current project. Then you should the
following:

- second click on the header files directory then select add files. search for the file
p30f2020.inc that is inside the MPLAB installation directory, then add this file.

- second click on the Linker script directory then select add files. search for the file
p30f2020.gld that is inside the MPLAB installation directory, then add this file.

After adding this files your project should look like the following image



| teste - MPLAB IDE v8.53 - &

te.mow

File Edit View Project Debugger Programmer Teols Configure Windoew Help
JDD’“ul%-ﬂ‘éﬁ“‘?J q 3@?"."H%.0‘@|‘_~]J Checksum: Oxcfch Dby Be By MRy £ 8

P s | %2 symoels|

_ PICkit 2 dsPIC30F2020 oabsabIP0  dcnovzc

4+ Step: compiling
After adding all of the relevant files you can start compiling the code, the “Build all” button is
on the top center of the shortcut buttons or you can use the Project menu and then “Build all” or
use the short cut keys “Ctrl + F10”

The compiling should look like this:



a teste - MPLAB IDE v8.53
File Edit View Project Debugger Programmer Teols Configure Window Help

O & i [ Lok o ) % Debug B EEBw@® | &@a Checksum: Oxcfch Oy O DOy Oy F 3 B
= — 2| Output = |G =]
B testemew [=[=]r=] -
Buld | Version Control | Find in Filss | PICKit 2] -
- testemep Clean Done. -
&+ Source Files Executing: "C\Program Files\MicrochiphMPLAB ASM30 Suiteibinipicil-as.exe" "CiVOdoutaramentaicompass\DSPIC_prograrmiCOMPASSE.5" -0"COMPASSh.0
Executing: "C\Program Files\MicrochiphMPLAB ASM30 Suiteibinipic30-ld.exe" "COMPASEE.0" —script="\.\ .\ AProgram Files\Microchip\MPLAB ASM30 Suite\Su
5 (£ Header Files
E [ p30f2020.inc Program Memory [Origin = 0x100, Length = Dx1f00]
(X2 Object Files
£3 Ubrary Fles section address  length (PC units)  length (bytes) (dsc)
=1 (2 Linker Seript text 0=100 0xd56 O0=681 (1h65)
‘...|2] paofenz0.gid dinit 0=556 i =3 (3)
3 Other Fies .isr 0=558 0=2 0=3  (3)
Total program memory used (bytes) 0=627 (1e71) 14%
Data Memory [Origin = Ox800, Length = 0x200]
section address alignment gaps total length (dec)
[ Files | ¥ Symbols | Total data memory used (bytes) 00y
Dynanic Memory Usage =
region address mazimum length (desc)
heap 0 00}
stack 0=800 O0=200 (512)
Hazinum dynamic memory (bytes) O=200 (512)
Executing: "C\Program Files\MicrochipiWPLAB ASM30 Suite\binipic30-hinzZhex exe" "CAVOdoutoramentohcompas s\DSPIC_programitesteeeteste.cof!
Loaded CYVO\doutoramentoicompass\DSPIC_programitesteesiteste.cof
Debug build of project "CAVOYdoutoramento\compass\DSPIC_programitesteeeiteste.mcp’ succeeded
Language tool versions: pic3li-as exe v3 23, pici0-d exe v3.23, pic3l-ar exe v3 23
Preprocessar symbal *__DEBUG' is defined
Thu Jul 23 19:24:20 2010
« n v

PICkit 2 dsPIC30F2020 oabsabP0  dcnovzc

5th Step: programming the target device

First connect your programmer to the USB port and to the 6-pin RJ11 plug on the Fast
amplifier that you what to program.

Then go to the Programmer menu on MPLAB and select you programmer. After doing that
some information about the programmer connection should pop out in the output window, verify
that everything is ok and then use the programmer menu and select “Program”. If everything is
ok, your micro-controller is now programmed.



Extra chapter: How to change the operation time of the fast
amplifiers

Normally the fast amplifiers are programmed for 1 second of operation after a start
command, however it can be changed easily in the source code. This is a crucial parameter
of circuit protection, so please be aware of the dangers and consequences of over-
passing the circuit limits.

This reset after 1 second of operation is controlled by the DsPIC30F2020 Watch Dog Timer
(WDT), when in operation this WDT is not cleared thus provoking a reset after the programmed
time.

The WDT configuration is made in the beginning of the source code in the following line:

config __ FWDT, 0b00000000000000001 1011000 iatcHdeamerE=H022Ims

To change the WDT you only need to modify this line of code and to reconfigure the bits of
the register according to your needs.

The FWDT register was 16 bit, the first bit on the right is the Least Significant Bit (LSB) and
and it is the bit number 0, so the bits are ordered from bit-15 to bit-0, left to right (the “Ob” prefix
is to use binary numbers afterwards)

The WDT configuration is described in the following table:



TABLE 18-7:

FWDT AND FPOR BIT DESCRIPTIONS FOR dsPIC30F1010/202X

Bit Field

Register

Description

FWDTEN

FWDT

Watchdog Timer Enable bit

1 = Watchdog Timer always enabled. (LPRC oscillator cannot be dis-
abled. Clearing the SWDTEN bit in the RCON register will have no
effect.)

0 = Watchdog Timer enabled/disabled by user software (LPRC can be
disabled by clearing the SWDTEN bit in the RCON register)

WWDTEN

FWDT

Watchdog Timer Window Enable bit
1 = Watchdog Timer in Non-Window mode
0 = Watchdog Timer in Window mode

WDTPRE

FWDT

Watchdog Timer Prescaler bit
1=1:128
0=1:32

WDTPOST<3.0>

FWDT

Watchdog Timer Postscaler bits
1111 =1:32, 768
1110 =1:16, 384

0001=1:2
0000 =1:1

FPWRT<2:0>

FPOR

Power-on Reset Timer Value Select bits
111 = PWRT = 128 ms

110 = PWRT = 64 ms

101 =PWRT=32ms

100 = PWRT = 16 ms

011 =PWRT=8ms

010 =PWRT =4 ms

001 =PWRT=2ms

000 = PWRT = Disabled

bit 6 -> window mode (please put always 1 or it might malfunction)
bit 4 -> prescaller bit (0==32; 1==128)
bit 3 to bit 0 -> postscaller bits (2*(bitvalue) example: 0100 -> 2*4 = 16)

To know the exact timing of the reset you can use the following formula:

WDT period = (1/512kHz) x pre-scale value x post-scale value x 16

Table with all combinations:




postscale prescale =0 (x32) | prescale =1 (x128)
0000 (x1) 0.001 0.004
0001 (x2) 0.002 0.008
0010 (x4) 0.004 0.016
0011 (x8) 0.008 0.032
0100 (x16) 0.016 0.064
0101 (x32) 0.032 0.128
0110 (x64) 0.064 0.256
0111 (x128) 0.128 0.512
1000 {x256) 0.256 1.024
1001 (x512) 0.512 2.048
1010 (x1024) 1.024 4.096
1011 (x2048) 2.048 8.192
1100 {x4096) 4,096 16.384
1101 (x8192) 8.192 32.768
1110 {x16384) 16.384 65.536
1111 (x32768) 32.768 131.072

(time in seconds)

example:
config __ FWDT, 0b000000000000000011010110;~256ms (no window mode)

pre-scale -> 1== 128, post-scale -> 0110 = 2 = 64 --> WDT period = 1/(512 kHz) x 128 x 64 x 16 =
256ms



